Don’t Get Left in the Dark: Revolutionize Your Backup Power with Remote Monitoring

Take a moment and imagine that a major power outage has just hit your city. While your competitors scramble around in the dark, your business remains brightly lit and fully operational. Why? Because you had the foresight of installing a remote monitoring package on your backup generators which allowed you to identify potential maintenance issues and get them addressed prior to any grid power outage.

This isn’t just a nice-to-have feature . . . it’s a critical component in safeguarding your business amidst the increasingly unpredictable US electrical grid!

The Silent Menace: Unpredictable Power Failures

Did you know that estimates pin business losses due to power outages in the US at over $30 billion annually? Backup generators may be the first line of defense, but without proper monitoring, they’re kind of like the old tractor stored in the back of a barn . . . it’s simply not going to start when it is needed most!

Remote monitoring solutions take the uncertainty away by  providing real-time data and empowering proactive decision-making.

Let’s delve into why this technology isn’t just an option, but a necessity.

Predictive Maintenance: A Crystal Ball for Your Generators

It’s not the unknown we should fear . . . It is being unprepared for the unknown that should be feared.

Traditional generator maintenance operates on a set schedule . . . but what if an impending failure arises between scheduled maintenance? Remote monitoring systems, with properly tuned critical alerts and data trends, function like a crystal ball. They can predict potential issues allowing you to act before the potential issue turns into a costly disaster. For instance, by monitoring; battery voltage, coolant temperature, and fuel level, you can mitigate the risk from three of the top six reasons a generator fails to start.

Cost Efficiency: More Than Just a Penny Saved

The operational cost of your business being down due to a power outage can be enormous. Add to this the lost revenue opportunity because you cannot make or sell anything! For these two reasons alone, it just makes sense to spend a few dollars on a remote monitoring system.

In addition to this, when considering the cost of remote monitoring system, it is important to take into account the cost of an emergency callout during a power outage. This callout can easily be upwards of $1000 to $2000 dollars depending on the generator issue. However, a remote monitoring system allows you to identify many of these issues before they become emergencies so they can be handled as regular maintenance items. Avoiding one emergency callout per year can easily pay for the cost of a remote monitoring system.

So it’s not just about pinching pennies. Resources must be allocated strategically to where they matter most!

Take Action

The choice to implement remote monitoring for your generator moves you and your facility from uncertainty towards assurance and from reactivity to proactivity.

Remote monitoring is not just an upgrade . . . it’s an essential pivot towards operational excellence!

Don’t wait for the next power outage to reveal your back up power generator’s vulnerabilities. Assess your backup power setup and consider how remote monitoring can transform your approach. It’s time to move from playing catch-up to leading the way in operational efficiency and reliability.

For more insights on this transformative approach, contact Collicutt Energy at 888.682.6888. We have a team of experts that would be happy to work with you to evaluate your project and determine the best fit solution for you.

Remember, in the world of backup power, being proactive isn’t just a strategy; it’s a survival imperative.

Read More

Navigating the Evolving Landscape of Emergency Power Codes: Insights and Expert Guidance

In the intricate world of building codes and standards, staying ahead is not just a matter of compliance, it’s a commitment to safety and foresight. If you’ve had the task of interpreting code and standards, you know that it can be quite the rabbit hole!  We’re approaching the enforcement of the National Building Code of Canada 2023, set to take effect on May 1st, 2024, and it’s imperative to understand some complexities and implications, particularly when it comes to emergency electrical power supplies in buildings.

 

The realm of building codes is in constant flux, a reality that professionals in the industry face daily. Keeping up-to-date of the myriad of codes, revisions, and standata is a never-ending challenge. The National Building Code of Canada (NBCC) 2023  is no different.

 

The 2023 edition of the NBCC – Alberta Edition continues to specify CSA C282-15 as the mandatory standard for emergency power systems in buildings and CSA Z32-15 for those in healthcare facilities, as cited in Table 1.3.1.2. This is despite the availability of updated versions of these standards, CSA C282-19 and CSA Z32-19, which were published in 2019.

 

CSA Z32 essentially defers to CSA C282 for all requirements concerning emergency generators; hence, we will focus exclusively on CSA C282 in the remainder of this article.

 

What is CSA C282?

 

This Standard applies to the design, installation, operation, maintenance, and testing of emergency generators and associated equipment for providing an emergency electrical power supply to electrical loads

 

  • in buildings and facilities when the normal power supply fails and an emergency electrical power supply is required by the National Building Code of Canada (NBCC); and
  • of essential electrical systems, where emergency generators are intended for use in health care facilities (HCFs) in accordance with Clause 6 of CSA Z32.

 

It’s important to recognize that the revised CSA C282-19 standard brings some updates over the former CSA C282-15. While not compulsory under the new building code, these revisions merit consideration for their potential to bolster the safety, effectiveness, and longevity of your emergency power infrastructure.

 

Choosing to implement the latest standards, even when not explicitly required, is a proactive step towards ensuring additional safety and future-proofing your project. It’s an acknowledgment that while compliance is non-negotiable, excellence is a choice.

 

At Collicutt Energy Services, we understand the intricacies of these codes and the significance of staying ahead. Our expertise isn’t just in delivering cutting-edge emergency power solutions; it’s in guiding you through the complex landscape of standards and regulations.  We are here to ensure that your projects not only meet the current codes, but are also future-proofed, providing safety, reliability, and peace of mind.

 

Connect with us today to future-proof your project and redefine the benchmarks of safety and excellence in your emergency power systems.

Read More

The Role of AESO and the Operating Reserve Program

Harnessing Alberta’s Energy Future: The Role of AESO and the Operating Reserve Program

Alberta’s electricity market is a dynamic landscape that requires balancing supply and demand with precision and foresight. At the heart of this system is the Alberta Electric System Operator (AESO), a not-for-profit entity mandated to operate an open and competitive wholesale market, ensure the safe and reliable operation of the electric system, and plan and develop the transmission system to provide access to customers​​.

 

Among many tools in the AESO’s “toolbelt” is the procurement of Operating Reserves (OR). This is a crucial mechanism that helps to maintain system reliability when there is an unexpected imbalance between supply and demand due to various system conditions.

 

In the AESO’s Operating Reserve (OR) framework, supplemental reserves are a critical component, providing a safety net for the electrical grid when demand outstrips supply or generation unexpectedly falls. Unlike regulating reserves which respond instantaneously, supplemental reserves can be activated swiftly—within a 10-minute window—enabling the system to recover from sudden imbalances. For instance, a backup generator system, whether newly installed or pre-existing, can be a perfect solution to supply such supplemental reserves. When the grid requires additional power, these generators can ramp up, and allow a facility transfer their electrical load to the generator(s) thereby curtailing or removing load from the grid.

 

One very recent example that I’m sure all Albertans remember, is the Emergency Alert issued on January 13th during a serious cold snap of -40°C. Operating Reserve was a crucial tool for keeping Alberta from power outages, and Voltus played a key role by dispatching their supplemental reserve portfolio.

 

 

Participating in the OR market not only contributes to the stability of Alberta’s power grid but also represents a strategic business opportunity to create an additional revenue stream. Through our partnership with Voltus, Collicutt Energy Services is positioned to make participation in the OR program simple and easy.

 

We invite you to be part of Alberta’s energy resilience story.

 

Visit our Webpage to discover how we can energize your business with a WIN-WIN through Alberta’s Operating Reserve program and Voltus.

Read More
Alberta Emergency Alert Jaunary 13th, 2024

How Demand Response Supports Grid Reliability

On January 13th, I was sitting with my extended family watching the Hockey game. We celebrated every shot on goal for our team, and shrieked every time the other team almost scored. However, close to the end of the game the feed cut out and all of our phones in horrible harmony issued this obnoxious blaring noise: an Alberta Emergency Alert had been issued, because of a high risk of rotating blackouts.

 

Why did this alarm concern me?

This was deeply concerning! It was at least -30C and our house’s furnace was already struggling to keep up; we had an electric space heater in the living room helping keep that specific room warm for everyone.

Without power, we’d immediately lose our house lighting, the power to the space heater and potentially lose the power to our furnace ignition system. This would leave all 10 of us without any form of energy to stay warm.

What caused this grid alert?

  • Problem 1: High Grid Demand – As you can see in image 2, There was a significant increase in power consumption within the province: The Alberta Electric System Operator (AESO) reported an Alberta Interconnected Load (AIL) of 11,802 MW, up from ∼10,500 MW earlier that day. The primary reason for the high load was the extremely low temperatures we were experiencing in the province.

 

Image 2: Weekly Energy Summary posted on January 15th. Source (Linkedin). Graph shows how on January 13th, there was a marked uptick in power consumption around 6pm. At this time, power prices in the province shot up to the AESO price limit of $999/MWh, 10 times the 30-day rolling average at the time of $100/MWh.

 

  • Problem 2: Loss of Generation in the ProvinceThe larger issue that led to the emergency alert was the lack of available power generation in the province. As shown in Image 3, there was a significant lack of both wind and solar at the time of alert.

 

Image 3: Alberta electricity production by type (Source: Alberta Energy). Generation by natural gas made up 81.7% of power generation at the time of the emergency alert. At the time of the alert, Solar and wind provided 100MW of the 6,131MW of installed power generation as reported on AESO Supply page.

 

How Collicutt Energy Helped Support Grid Reliability

At Collicutt Energy Services, our primary business is ensuring reliable power to your facility; whether this is through onsite natural gas generation or backup standby diesel power.

 

During this grid emergency event, many of our clients responded to an AESO directive to reduce their consumption. This is referred to as ‘Demand Response’. Over the last year, we have been helping clients prepare for events like this by getting their facility set up with backup generation that could, at a moment’s notice, provide relief to the grid.

 

Over the weekend of January 12-14th, our customers helped provide seven hours of grid relief; two and a half of those hours occurring on January 13th.

 

FAQ

  • Why did our clients participate in Demand Response?

A natural question many people would ask is “Why would a large industrial customer participate in Demand Response? especially if it could impact the production of that company?”

Great question – other than being a great corporate citizen, they were compensated for it.

 

In 2022, the average customer who participated in Demand Response (Also formally referred to as Operating Reserve: Supplemental Reserves) earned between $200-250,000 for every Megawatt they were able to curtail. So for a facility that consistently consumed 2MW and participated in Demand Response, they could earn as much as $500,000 for reducing load for approximately 20-30 hrs of the year.

 

  • Can your facility participate in Demand Response?

With further deployment of renewables in Alberta and greater demand for electricity in the province, we are expecting more events like the grid emergency event of January 13th to happen in the future.

 

  • Can I enroll my facility in Demand Response?

Here are the eligibility criteria:

  1. Are you consistently consuming 400kW or greater between 7 am and 11 pm?
  2. Can you reduce your power consumption within a 10 minute period?

 

If your answer to the above questions is yes, then your facility is eligible. Reach out to us.

 

About the Author

Matthew Swinamer is a mechanical engineer with APEGA. In Matthew’s role as Technical Sales Engineer, he works to help commercial and industrial clients understand the power of onsite generation to reduce utility costs and increase sustainability of their energy consumption.
Read More

Reliability in Power

Reliability in Power

This is the Fifth episode in this series called ‘Understanding Power’.

This episode’s topic is all about understanding the cost of your utility bills.

This video and blog covers two topics

  1. Reliability in Power
  2. Reliability in Transmission

Relability in Power Generation

on January 13, the Alberta Electrical System Operator (AESO) released two notices, each more serious than the other: The grid was at risk of having province wide blackouts. What caused this? Well, it was two-fold:

  • High Demand: because it was winter and it was extremely cold  (-30C), there was a lot of extra load. In fact, Alberta hit an all time high record that week.
  • Limited Power Generation: Alberta has a large percentage of wind power capacity(shown in pie chart on left below) but the thermal gradients that create wind are limited in very cold weather meaning there was very little wind power being generated (shown in pie chart on right below)

this created the perfect storm where we had an elevated load and an undersupplied grid almost resulted in calamity.

Ensuring Sufficient Power Generation

It is probably very clear that a territory needs to ensure that there is more power generation capacity than there is load, what may not be as straight forward is how the different types of power generation operate throughout the day and respond to load variability.

above is a fictitious example of a typical 24 hour day within an example jurisdiction.  What this chart is aiming to show is how throughout an average day, most grids see dramatic load change with two main spikes: the first in the morning as people get up and get ready for work, and the second at nighttime when people leave work and start cooking.

Our grid power generation mix is made up of 3 main groups: (Get more information on power generation technologies)

  • Baseline power: Power generation capacity that cannot easily be ramped up or ramped down. 
  • Variable Power: Power generation systems that produce power when available such as solar (during sunlight hours) and wind (when the wind blows)
  • ‘Agile’ Power: Power generation systems that can easily be ramped up or ramped down to allow for overall grid load response. 

In the chart shown above, you can see how the baseline power (Nuclear, Hydro and Large thermal) remain relatively consistent throughout the day. Additionally, you will notice how solar comes on during sunlight hours. Though wind appears to be consistent, Wind power is a function of wind and can be unreliable as seen above. Finally you can see how the major load variability is responded to by small and responsive thermal plants which operate using engines and aero derivative turbines. The benefit of these types of systems are that they can be easily turned on, ramped up and then turned off as necessary.

This mix of generation capabilities allows the grid to quickly respond to load changes ensuring reliability of power supply.

Reliability in Transmission

The second part of this topic is about reliability in the transmission systems we employ to transmit power from the point of generation to the eventual location of where the load is, whether that is our house or a facility.

It is straight forward to understand that we need to have adequate power generation for the load of our grid at any given time; but equally, we need to ensure that this transportation infrastructure can supply the amount of power to the locations required. The major portion of our system is the transmission lines, whether that’s the transmission portion, or the distribution portion, the power lines play a huge role in the reliability of our power system.

Transmission Reliability Problem 1: Capacity Overload:

The first thing we need to make sure is that we are never in a scenario where our load exceeds the capacity of our transmission lines. In scenarios where the load of the system exceeds the capacity of the power lines or transformers, we end up in scenario where we will have system wide power failure. Want more information how the transmission system works?

Transmission Reliability Problem 2:

Powerline obstruction

The second scenario that we see a lot with power lines is power lines are highly susceptible to weather: They’re above ground, easily exposed to flying debris, for example, in hurricanes, and also susceptible to easily sparking fires and we’re seeing this happen quite a bit in California these days.

 

 

 

In 2019 act, we actually saw a utility actively choose to turn off their high voltage power lines, because of fears that their lines would cause fires and that resulted in massive power outages and failures within the the Northern California region.

How can we increase reliability in transmission?

 Well, one of the ways that a utility can increase the reliability of the grid, is by generating power closer to the load, and ont he distribution side of the transmission system. This is called distributed generation. By moving the generation closer, the likelihood of line failure between generation and load has been dramatically reduced.

Onsite Power Generation

So let’s say you lose power at your facility and there is no distributed power generation or in fact, the power outage is right outside of your building, how are you going to ensure that you have reliability? this is where standby generation or on site power generation support power reliability.

Below is an example of a backup diesel generator installed at a hospital to provide backup power in the case of grid power failure. Want more information? 

 

Read More

Power Markets

Power Markets

This is the fourth episode in this series called ‘Understanding Power’.

This episode’s topic is all about understanding the cost of your utility bills.

after evaluating your utility bill, it quickly becomes clear that there are two major factors or two primary categories of costs:

  1. Energy Charge.
  2. The cost of the Transmission and Distribution (T&D)

Energy Charge:

The energy charge is effectively the cost cost of energy that is consumed at our facility, house or industrial application

What affects the Energy Charge?

Some of the major factors that play into that into the energy charge are as follows:

  • the types of generation mechanisms within your jurisdiction: Some are cheaper, some are more expensive.
  • The supply and demand curve: do we have a lot of supply and not a whole lot of demand, that will bring price down, if it’s the opposite, you’re going to see prices rise to incentivize power generation increase.
  • Weather, climate, geography: those play a huge role.
  • Regulatory policy

Transmission Charge

Second aspect is the cost of transmission and what are we paying for that. Simply put, we’re paying for the cost of getting those electrons from the centralized generation facilities right through to our final end use customer location, whether that’s your house, office or large industrial facility.

The rates and cost of power transmission does vary depending on the facility and rate that your specific utility charges (or is regulated and allowed to charge)

How does Power Transmission Work?

Most jurisdictions have large centralized generation plants, typically on the transmission side, and large volumes of loads on the distribution side of the system.

Transmission System

As mentioned, in most jurisdictions the majority of power generation is supplied by large centralized systems that uses the transmission system to transfer the load to a large volume of customers spread out geographically.

As such, the transmission system operates at high voltage so that large volumes of power can be transmitted with minimal line loss (Power loss) from the generation systems to the eventual load.

Typically there is minimal load (or customers) on the transmission side but there are rare occasions where facilities tie into the transmission system.

Distribution System

The distribution system operates at reduced voltage allowing safe and reliable transportation of power within urban and city environments. Distribution can range from as high as 26 kV and down to 120V.

The majority of the grid’s load is typically on the distribution system.

Regulated vs De-regulated Power Markets

Some jurisdictions operate their power infrastructure under a regulated style, while some are de-regulated.

So what is a regulated environment?

In a regulated power market, a single entity or organization owns and operates everything. From the generation capacity, to the meter on your house or facility, that single entity oversees everything. So typically, the utility is the monopoly, you really don’t have any choice and the utility sets the rates. You really have no option.

So what is a de-regulated environment?

A de-regulated market is a competitive marketplace, where multiple entities can buy and sell power. So on the on the generation side, you have multiple power generators that are competing to provide power at the cheapest rate, and then on the customer side, you have retailers who are competing for customers by offering the best rates. So what this allows is a customer to have a choice in whom they are going to get power from and that choice can be based on, on cost, sustainability to other specific criteria to that customer; that’s one of the benefits of a deregulated power market.

Centralized vs Decentralized vs Behind-the-fence generation

So one of the last things I want to speak to is the concept of centralized power generation vs distributed power generation vs behind the fence (BTF) generation.

Centralized Power Generation

As mentioned above, most power generation is usually done at large centralized facilities. The economies of scale typically allow this power generation to be cost-effective. Additionally with the ability to be on the transmission side, large volumes of power can be transmitted easily.

Distributed Power Generation

We are starting to see a move to distributed generation, where we’re placing generation closer to the point of load and on the distribution side of the transmissions system. By doing this, we reduce the amount of capital required to transmit power and we increase the reliability and resiliency of the grid

Behind-The-Fence Power Generation

The last is Behind-The-Fence (BTF) generation. We can actually reduce our transmission costs, reduce our utility bill by generating our own power. If you’re a large industrial customer, there’s huge incentives for you to generate your own power.

 

 

Read More

S2:E3 – How is Electricity Generated?

This is the third episode in our series titled ‘Understanding Power’

This episode delves into the different mechanisms and methods for generating electricity.

The first thing we discuss is how kinetic energy is turned into electrical energy using a generator.

This video then goes into the different ways that kinetic energy is converted from other forms of energy, some that are storable and others that are not.

We then delve into renewable power generation technologies and their merits and disadvantages.

Finally this video touches on the topic of curtailment and how excess power, predominantly from renewables, may have to be wasted because it is produced in excess of the load with insufficient storage options.

Feel free to check out other videos like this on our website and sign up on our website for notification of new videos.

 

 

Read More